Perplexity(困惑度)是自然语言处理中用于评估语言模型性能的核心指标,它衡量模型在预测序列数据(如文本)时的平均不确定性程度。具体而言,Perplexity通过计算模型在测试集上的交叉熵损失并取其指数得到;值越低,表明模型对数据的拟合越好、预测越准确,常用于比较不同模型在相同任务上的表现。
在AI产品开发实际落地中,Perplexity被广泛应用于优化语言模型驱动的应用,例如聊天机器人、机器翻译或内容生成系统。AI产品经理可借助此指标监控训练效果、调整超参数,并验证模型在真实场景的泛化能力,从而确保产品性能符合业务需求并提升用户体验。
免费模拟面试:试试能否通过大厂“AI产品经理”面试?